

How to Accomplish Low Stress While Molding Polyester BMC

Our goal is:

• To present correct gate placement that gives us the lowest stress

I will accomplish this by:

- Focusing on stress of the polyester using von mises
- Analyzing results to help locate the best gate location with minimal stress

Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserved.

Agenda

- 1. Results by Type of Analysis Sigmasoft Thermoset Part (From GrabCAD)
 - -Von Mises What is it?
 - -Analyzing stress
 - -Analyzing fibers
 - -Simulation set up
 - -Results and discussion

Von Mises

Let's start out explaining what Von Mises is. Von Mises stress is a measure of the total amount of stress acting on a material at a given point.

Von Mises stress is a theoretical stress that represents a measure of the total amount of stress acting on a material at a given point. However, von Mises stress does not take into account any material failure criteria, such as ultimate tensile strength, or fracture toughness. These failure criterias are the limiting factors that determine the material's ability to withstand stress before failure occurs. Therefore, while von Mises stress can provide insight into the state of stress in a material, it cannot predict the exact point at which failure will occur.

© Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserved.

Analyzing Pump Cover

SIGMASOFT Virtual Molding

GWASOF 7 Virtual Molding

Analyzing Stress – Von Mises

 Arrows represent Von Mises stress in the part. This specific area might be of interest if you screwing a bolt in.

Analyzing Stress – Max Principle Stress

 Arrow represent high stress areas in the part. This represents high stress areas in the part especially on the bottom of the part.

Virtual Molding

Virtual Molding

5

Analyzing Fiber X Direction

 Arrows represent fiber flow in X direction. Blue areas represent low % of orientated fibers where red areas represent high % of orientated fibers. Scale is set from 40-95%.

© Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserved.

GWASOF Virtual Molding

Analyzing Fiber Y Direction

Arrows represent fiber flow in Y direction. Blue areas represent low % of orientated fibers where red areas represent high % of orientated fibers. Scale is set from 40-95%.

v07_d26

Virtual Molding

Analyzing Fibers Using Max. Eigenvalue

Max. Eigenvalue – Measurement orientation of fibers in the flow direction. Scale represents percentage on how many fibers are orientated in a specific area.

v07 d26

X-Ray: off

ASOF Virtual Molding

Analyzing Fibers Using Max. Eigenvalue

Max. Eigenvalue – Measurement orientation of fibers in the flow direction. Scale represents percentage on how many fibers are orientated in a specific area.

Analyzing Fibers in Sigmasoft

© Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserved.

Tool Setup in Sigmasoft

While simulating polyester material I used heatmed for my mold material at a temperature 140°C. Heatmed gives consistent heating throughout the simulation. It's telling the program to hold 140°C throughout the simulation instead of varying the temperature.

Material Used

- 20% glass fiber reinforced polyester BMC
- 40% glass fiber reinforced polyester BMC

Gate Location and Design Variables Setup

I placed gate locations at thick and thin areas on the part. That way we can lean how this effects stress in our part.

	Design Variable	Dataset List	Dependency	
✓	Part Material Class - Material Data	User/BMC_Particle User/BMC_REG	<none></none>	
	Design Variable	Selection	Dependency	
	Geometry geometry_exchange_001 - Activated item	1 Gate 1 2 Gate 2 3 Gate 3 4 Gate 4 5 Gate 5 6 Gate 6	<none></none>	

SIGMASOFT Virtual Molding

© Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserved

Gate Location and Design Variables Setup

	Design Variable	Dataset List	Dependency
✓	Part Material Class - Material Data	User/BMC_Particle User/BMC_REG	<none></none>
	Design Variable	Selection	Dependency
	Geometry geometry_exchange_001 - Activated item	1 Gate 1 2 Gate 2 3 Gate 3 4 Gate 4 5 Gate 5 6 Gate 5	<none></none>

Gate Location and Design Variables Setup

	Design Variable	Dataset List	Dependency
✓	Part Material Class - Material Data	User/BMC_Particle User/BMC_REG	<none></none>
	Design Variable	Selection	Dependency
>	Geometry geometry_exchange_001 - Activated item	1 Gate 1 2 Gate 2 3 Gate 3 4 Gate 4 5 Gate 5 6 Gate 6	<none></none>

Gate Location - Results and Discussion

Stress is higher on particle 40 glass filled polyester vs. low filled

Correlation

© Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserve

GWASOF7 Virtual Molding

6

Gate Location - Results and Discussion

Correlation

Gate Location - Results and Discussion

Best gate

_							
	Rank	Design	Part Material Class - Material Data (-)	Geometry geometry_exchange_001	Air Entrapment (-)	Stress1 (-)	Voids (-)
	Rank 1	Design 12	User/BMC_REG	6 Gate 6	28.43	9.55	1.83
	Rank 2	Design 10	User/BMC_REG	5 Gate 5	24.0	11.39	2.07
	Rank 3	Design 6	User/BMC_REG	3 Gate 3	29.41	11.84	1.91
	Rank 4	Design 8	User/BMC_REG	4 Gate 4	29.41	8.58	1.91
	Rank 5	Design 4	User/BMC_REG	2 Gate 2	31.72	12.99	1.86
	Rank 6	Design 2	User/BMC_REG	1 Gate 1	31.7	9.14	1.92
	Rank 7	Design 11	User/BMC_Particle	6 Gate 6	28.43	276.88	1.83
7	Rank 8	Design 9	User/BMC_Particle	5 Gate 5	24.0	212.02	2.07
	Rank 9	Design 5	User/BMC_Particle	3 Gate 3	29.41	233.99	1.91
	Rank 10	Design 7	User/BMC_Particle	4 Gate 4	29.41	229.91	1.91
	Rank 11	Design 3	User/BMC_Particle	2 Gate 2	31.72	240.58	1.86
	Rank 12	Design 1	User/BMC_Particle	1 Gate 1	31.7	272.41	1.92

Worse gate

Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserved

Scenario 1 – Customer Dictates Where Gate Will be Located

SG

SIGWASOFT Virtual Molding

© Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserved.

Optimizing Worse Gate Location

Goal - Minimum Stress, Voids and Air Trap

Design Variables

	Design Variable	Lower Limit (s)	Upper Limit (s)	Step (s)	Dependency
•	Filling - Filling Time	5.0	20.0	5.0	<none></none>
	Design Variable	Lower Limit (°C)	Upper Limit (°C)	Step (°C)	Dependency
~	Permanent Mold Class - Initial Temperature	130.0	150.0	5.0	<none></none>
✓	Part Material Class - Initial Temperature	40.0	70.0	10.0	<none></none>
	Design Variable	Lower Limit (s)	Upper Limit (s)	Step (s)	Dependency
~	Inlet Control - Time	2.0	16.0	3.5	<none></none>
✓	Mold Open Step - Permanent Mold ID 1 - Time	140.0	170.0	10.0	<none></none>

Stress vs. Material Temperature, Mold Temperature and Pack Time

Correlation

Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserved.

Virtual Molding

6

Air Entrapment vs. Fill Time, Material Temp., Mold Temp and Pack Time

Correlation

© Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserved.

Virtual Molding

b

GWASOF7 Virtual Molding

So, which design gives us the lowest stress?

Virtual Molding

6

- Design 60 Lowest stress with below design settings
- ¬ 10 second filling time
- ¬ 60°C Material Temperature (When injected)
- ¬ 130°C Mold Temperature
- ¬ 170 Seconds Mold Open
- ¬ 9 Second Pack Time

Curing Degree of Design 60

© Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserver

SIGMASOFT Virtual Molding

- Design 12 Highest stress with below design settings
- 10 second filling time
- 60°C Material Temperature (When injected)
- 150°C Mold Temperature
- 160 Seconds Mold Open
- 10 Second Pack Time

Virtual Molding

D

MPa

Empty

270.9

253.7

236.5

219.3

202.1

184.9

167.7

150.5

133.2

116.0

98.8

81.6

64.4

47.2 30.0

¬ Shrinkage & Warpage Design 60 vs. Design 12

mm

0.6146

Optimizing Best Gate Location

Goal - Minimum Stress, Voids and Air Trap

© Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserved.

Correlation

O Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserved.

Virtual Molding

5

Voids vs. Mold Temperature °C

Air Entrapment vs. Filling Time, Material Temperature and Mold Temperature °C

Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserv

GWASOF7 Virtual Molding

- Design 34 Lowest stress with below design settings
- ¬ 15 second filling time
- ¬ 50°C Material Temperature (When injected)
- ¬ 130°C Mold Temperature
- ¬ 150 Seconds Mold Open
- ¬ 5.5 Second Pack Time

- Design 7 Highest stress with below design settings
- 10 second filling time
- 70°C Material Temperature (When injected)
- □ 150°C Mold Temperature
- □ 170 Seconds Mold Open
- 10 Second Pack Time

Virtual Molding

b

GWASOF7 Virtual Molding

5

© Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserved

¬Remarks

Data suggests that analyzing von mises and specific process parameters can lead to low stress while molding thermoset polyester. Fill time, mold temperature, pack time and material temperature effect stress with thermoset polyester.

Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserved.

Questions

© Copyright2023, SIGMA Engineering GmbH, Aachen, Germany. All Rights Reserved.