

Advancing the Sustainability of SMC & BMC Composites SPE Thermoset TOPCON

Thomas Ebeling

May 10

Disclaimer Slide

Before using a product sold by a company of the LyondellBasell family of companies ("LyondellBasell"), users should make their own independent determination that the product is suitable for the intended use and can be used safely and legally. LyondellBasell MAKES NO WARRANTY, EXPRESS OR IMPLIED (INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE) OTHER THAN AS AGREED TO BY LyondellBasell IN THE PRODUCT SALE CONTRACT.

LyondellBasell prohibits or restricts the use of its products in certain applications. For further information on restrictions or prohibitions of use, please contact a LyondellBasell representative.

Users should review the applicable Safety Data Sheet before handling the product.

Adflex, Adstif, Adsyl, Akoafloor, Akoalit, Alastian, Alathon, Alkylate, Amazing Chemistry, Aquamarine, Aquathene, Avant, Catalloy, Circulen, Clyrell, CRP, Crystex, Dexflex, Duopac, Duoprime, Explore & Experiment, Filmex, Flexathene, Fueling the power to win, Glacido, Hifax, Hiflex, Hipolene, Histif, Hostacom, Hostalen PP, Hostalen ACP, Hyperzone, Ideal, Indure, Integrate, Koattro, LIPP, Lucalen, Luflexen, Lupolen, Luposim, Lupostress, Lupotech, Metocene, Microthene, Moplen, MoReTec, MPDIOL, Polybatch, Polywhite, Polyblak, Nerolex, Nexprene, Petrothene, Plexar, Polymeg, Pristene, Prodflex, Pro-fax, Punctilious, Purell, Qestron, Refax, SAA100, SAA101, Sequel, Softell, Softell Textile, Spherilene, Spheripol, Spherizone, Starflex, Stretchene, Superflex, TBAC, Tebol, T-Hydro, Toppyl, Trans4m, Tufflo, Ultrathene, Vacido and Valtec, are trademarks owned and/or used by the LyondellBasell family of companies.

Adsyl, Akoafloor, Akoalit, Alastian, Alathon, Aquamarine, Avant, CRP, Crystex, Dexflex, Duopac, Duoprime, Explore & Experiment, Filmex, Hifax, Hostacom, Hostalen, Ideal, Integrate, Koattro, Lucalen, Lupolen, Metocene, Microthene, Moplen, MPDIOL, Nexprene, Petrothene, Plexar, Polymeg, Pristene, Premi-Glas, Profax, Punctilious, Purell, Sequel, Softell, Spheripol, Spherizone, Starflex, Tebol, T-Hydro, Toppyl, Tufflo, Ultrathene are registered in the U.S. Patent and Trademark Office.

The statements in this presentation relating to matters that are not historical facts are forward-looking statements. These forward-looking statements are based upon assumptions of management which are believed to be reasonable at the time made, and are subject to significant risks and uncertainties. Actual results could differ materially based on factors including, but not limited to, the ability to comply with the terms of our credit facilities and other financing arrangements; the costs and availability of financing; the ability to maintain adequate liquidity; the ability to implement business strategies; availability, cost and price volatility of raw materials and utilities; supply/demand balances; industry production capacities and operating rates; uncertainties associated with the U.S. and worldwide economies; legal, tax and environmental proceedings; cyclical nature of the chemical and refining industries; operating interruptions; current and potential governmental regulatory actions; terrorist acts; international political unrest; competitive products and pricing; technological developments; risks of doing business outside of the U.S.; access to capital markets; and other risk factors. Additional factors that could cause results to differ materially from those described in the forward-looking statements can be found in our financial reports, which are available at <u>www.lyondellbasell.com</u> on the Investor Relations page.

Iyondellbasell Advancing Possible

About LyondellBasell

LyondellBasell is a strong, global company delivering outstanding performance

LEADING⁽¹⁾

Producer of **polypropylene compounds** globally Licensor of **polyolefin technologies** globally Producer of **polyethylene** in Europe Producer of **polypropylene** in Europe Producer of **oxyfuels** in Europe and North America

DIVERSE

The company's products, materials and technologies are **advancing sustainable solutions** for food safety, access to clean water, healthcare and fuel efficiency **in more than 100 international markets**.

GLOBAL

Every day, our **employees** work around the clock to safely **advance solutions** to our world's biggest challenges.

provide circular and sustainable solutions

As a leader in the global chemical industry, LyondellBasell strives every day to be the safest, best operated and most valued company in our industry.

(1) Source: LyondellBasell and IHS Markit. Note: Product rankings are as of December 31, 2021.

LyondellBasell has the scope and scale to serve global markets

Note: Information as of December 31, 2021.

LyondellBasell delivers innovative products and solutions in five key areas

	ā			
CHEMICALS	POLYMERS	ADVANCED POLYMERS	FUELS	TECHNOLOGIES
 We produce the chemical building blocks for: Furniture / household goods Coatings / adhesives / cleaners Cosmetics / personal care products Industrial fluids Fuel additives 	Our versatile plastic resins are used to create a variety of products including: Rigid and flexible packaging Textiles Automotive parts Healthcare Pipe Agricultural films / irrigation	Our diverse portfolio is used to create customizable products including: Automotive parts Differentiated packaging Electronics / appliances Building and construction materials Oil field services Aerospace Pipe Agriculture Wire and cable	Our refinery in the U.S. produces: Gasoline / fuel components Low-sulfur diesel Jet fuel	We license our state- of-the-art manufacturing and process technologies: • Polyolefin catalysts • Petrochemical process licenses

Advanced Polymer Solutions product portfolio

LyondellBasell delivers innovative solutions through our key material technologies:

Engineered Composites Division of LyondellBasell

Engineered Composites from LyondellBasell are transforming industries through a global portfolio dedicated to innovation and sustainability

Typical markets & applications

Engineered Composites

www.lyondellbasell.com

Iyondellbasell Advancing Possible

Sustainability in the Composite World

Early Sustainability in Composite Materials

Early Weaponry

- Mongolian composite curved bow
- Japanese samurai sword

Early Aerospace

- Late 1930's early 1940's: Gordon Aerolite
- Demonstration fuselage for Spitfire
- Phenolic and flax cured under pressure

Early Automotive

- 1941 Henry Ford "Soybean Car" concept vehicle
- Significantly reduced vehicle weight
- Soybean fiber in a phenolic resin

Historical Perspectives on Composites Environmental Impact

Use

- Part integration facilitates cost & weight reduction
- Increased use lifetime positive impact on environment
- Fuel efficiency in transportation provides positive impact on environment

Resources

- Use of bio-based materials viewed as inherently better
- Nature provides extensive sources of promising fibers
- Extensive research generates interest, challenges w/compatibility & economics
- Synthetic fibers much more widely used

End of Life

- Grinding & reusing as filler possible but challenges not trivial
- "Un-zipping" cross links & reusing resin impossible

Life Cycle Assessments in Composite Materials

Global Megatrends Influencing Sustainability

Climate Change

Demographics & Social Change

GLOBAL CHALLENGES					
PLASTIC WASTE		CLIMATE CHANGE	NGE THRIVING SOCIETY		
		OUR PILLARS			
END PLASTIC WASTE IN THE ENVIRONMENT	ADVANCE THE CIRCULAR ECONOMY	ADDRESS CLIMATE GROW SUSTAINABLE CHANGE SOLUTIONS		ENHANCE OUR WORKPLACE, OPERATIONS AND	
C C C C C C	\bigcirc		Įø	COMMUNITIES	
Collaborative partnerships across the value chain that tackle plastic at source:	Technology development and business model innovation:	Greenhouse gas emissions reductions from own operations and value chain:	Products and solutions that contribute toward circularity and sustainability:	Social and environmental issues important for how we operate:	
 Alliance to End Plastic Waste Operation Clean Sweep Venture investments 	 Mechanical recycling Advanced (molecular) recycling Renewable feedstocks 	 Carbon reduction program Renewable electricity Low carbon technology Scope 3 Climate risk 	• <i>Circulen</i> polymers: mechanically recycled, advanced (molecular) recycled and renewable- based products	 Safety Resource use DEI Sustainable procurement Community investment 	

ENDING PLASTIC WASTE

2MMT¹

of recycled and renewable-based polymers will be produced and marketed annually by 2030

FOR EVERY \$

we invest in venture funds that address the plastic waste challenge, we help catalyze another 5 dollars from co-investors

ZERO

plastic pellet loss to the environment from our facilities

ADDRESSING CLIMATE CHANGE

NET ZERO

greenhouse gas emissions from operations by 2050²

42%

absolute scope 1 and 2 greenhouse gas emissions reduction from operations by 2030³

30%

absolute scope 3 greenhouse gas emissions reduction by 2030³

50%

minimum of electricity procured from renewable sources by 2030⁴

SUPPORTING A THRIVING SOCIETY

ZERO

incidents, injuries and accidents

ACHIEVE

gender parity in senior leadership globally by 2032

INCREASE

the number of people from underrepresented groups in U.S. senior leadership roles to reflect the general population ratio by 2032

ASSESS

a minimum of 70% of our key suppliers globally using sustainability criteria by 2025

¹ 2 millions metric tons

- ² Our 2050 net zero goal includes scope 1 and 2 emissions
- ³ Our 2030 goal includes scope 1 and 2 emissions

⁴ Related to 2020 levels

Iyondellbasell Advancing Possible

LyondellBasell Engineering Composites Examples

Company Confidential 17

EC Example #1 – Bio Materials as filler or reinforcement

Bio Reinforcement

- Flax
- Hemp
- Jute
- Wheat Straw
- <u>Soy</u>
- Chicken Feathers
- Switch Grass
- Micro Cellulose

Challenges

- Moisture absorption
- Polymerization inhibition
- Temperature sensitivity

Benefits

- High specific strength & stiffness
- Low carbon footprint

Composition of the soy bean	
Protein	42%
Carbohydrates	33%
Oil	20%
Hull	5%

EC Example #2 – Bio source & recycle containing resins

Feedstock

- Vegetable oils
- Lignocellulosic biomass
- Strach rich residue
- Soybean Cake
- Sugarcane bagasse
- Industrial recycle
- Post-consumer recycle

Challenges (to composite compounder)

- Cost
- Availability
- Limited "Green" content in final product

Benefits

- Ease of use
- Low carbon footprint

- Propylene Glycol Produced from renewable feedstocks such as soy or corn instead of petroleum.
 - Identical chemical structure as petroleumsourced PG;
 - Meets same specifications as petroleumsourced PG.

- Terephthalic Acid Sourced and produced from a post-industrial stream of recycled polyethylene terephthalate.
 - Purge material from the PET manufacturing process that is created during start-up/shutdown or other process upsets.

EC Example #2 – Bio source & recycle containing resins

Leadership in Energy and Environmental Design (a.k.a. LEED) is the world's most used rating system for the design, construction and operation of high-performance green buildings.

Rapidly Renewable Materials category

- Reduce the use and depletion of finite raw materials and long-cycle renewable materials.
- Made from agricultural products harvested within 10-year or shorter cycle.

Recycled Content category

Reduce impacts resulting from extraction and processing of virgin materials.

LEEDS for every project

- Building Design and Construction
- Interior Design and Construction
- Building Operations and Maintenance

Net-Molded Shape Test Results

Property	Method	Control SMC	Premi-Glas 3501
Tensile Strength (MPa)	ASTM D638	57	75
Tensile Auto Young's Mod (MPa)	ASTM D638	13,000	14,800
Elongation (%)	ASTM D638	0.86	1.03
Flex Strength (MPa)	ASTM D790	140	163
Flex Auto Young's Mod (MPa)	ASTM D790	9,870	10,200
Notched Izod (J/m)	ASTM D256	481	578
Un-notched Izod (J/m)	ASTM D4812	717	923
Arc Resistance (seconds)	ASTM D495	180+	192
Flammability (@ 2.3 mm)	UL 94 V-0	Pass	Pass
Flammability (@ 2.3 mm)	UL 94-5V	Pass	Pass

EC Example #3 – Use of Reclaimed Material

EC Example #3 – Use of Reclaimed Material

EC Example #4 – Recovered Composite Fiber

Recycling Methods

- Mechanical
- Thermal
- Chemical
- High Voltage Fragmentation

Process and Applications Development for Recycled Mixed-Stream Composites

- PA16-0349-6.29-01
- US Department of Energy
- Establish viability of recycled composite parts using fibers reclaimed through controlled pyrolysis

EC Studied use of Carbon & Glass fibers in BMC

- Strength negatively impacted, minimized w/use of compatibilizer
- Stiffness little if any loss
- Encouraging results for core applications

Tensile Strength (psi)

EC Example #5 – Stacking Technologies

"Stacking" Scenarios/Options

- Bio Reinforcement/Filler + Bio Resin
- Bio Resin + Reclaimed Material
- Recycled Fiber + Recycle Containing Resin
- Recycled Fiber + Reclaimed Material

Challenges

- Mechanical properties
- Cost
- Interactions & impact on processability

Benefits

- Strength negatively impacted, minimized w/use of compatibilizer
- Stiffness little if any loss
- Carbon footprint

Property (units)	Method	Control	Control	Exp.	Exp.
		Average	Stdev	Average	Stdev
Tensile Strength (MPa)	ASTM D638	84.5	10.7	58.7	8.82
Flexural Strength (MPa)	ASTM D790	170	31.7	144	12.3
Flex Mod (MPa)	ASTM D790	9080	927	7480	792
Izod (J/m)	ASTM D256	527.7	1.42	528.6	0.74
Notched Izod (J/m)	ASTM D4812	527.4	1.45	527.4	1.11

Thank you for listening.

For more information, please email us or visit our website.

